Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38705759

RESUMEN

Lipid-associated macrophages (LAMs) are phagocytic cells with lipid-handling capacity identified in various metabolic derangements. During disease development, they locate to atherosclerotic plaques, adipose tissue (AT) of individuals with obesity, liver lesions in steatosis and steatohepatitis, and the intestinal lamina propria. LAMs can also emerge in the metabolically demanding microenvironment of certain tumors. In this review, we discuss major questions regarding LAM recruitment, differentiation, and self-renewal, and, ultimately, their acute and chronic functional impact on the development of metabolic diseases. Further studies need to clarify whether and under which circumstances LAMs drive disease progression or resolution and how their phenotype can be modulated to ameliorate metabolic disorders.

2.
Cont Lens Anterior Eye ; 47(3): 102137, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38485618

RESUMEN

A common non-spectacle strategy to correct presbyopia is to provide simultaneous images with multifocal optical designs. Understanding the neuroadaptation mechanisms behind multifocal devices usage would have important clinical implications, such as predicting whether patients will be able to tolerate multifocal optics. The aim of this study was to evaluate the brain correlates during the initial wear of multifocal contact lenses (CLs) using high-density visual evoked potential (VEP) measures. Fifteen presbyopes (mean age 51.8 ±â€¯2.6 years) who had previously not used multifocal CLs were enrolled. VEP measures were achieved while participants looked at arrays of 0.5 logMAR Sloan letters in three different optical conditions arranged with CLs: monofocal condition with the optical power appropriate for the distance viewing; multifocal correction with medium addition; and multifocal correction with low addition. An ANOVA for repeated measures showed that the amplitude of the C1 and N1 components significantly dropped with both multifocal low and medium addition CL conditions compared to monofocal CLs. The P1 and P2 components showed opposite behavior with an increase in amplitudes for multifocal compared to monofocal conditions. VEP data indicated that multifocal presbyopia corrections produce a loss of feedforward activity in the primary visual cortex that is compensated by extra feedback activity in extrastriate areas only, in both early and late visual processing.


Asunto(s)
Lentes de Contacto , Potenciales Evocados Visuales , Presbiopía , Corteza Visual , Humanos , Presbiopía/fisiopatología , Presbiopía/terapia , Masculino , Corteza Visual/fisiopatología , Persona de Mediana Edad , Femenino , Potenciales Evocados Visuales/fisiología , Agudeza Visual/fisiología
3.
J Proteome Res ; 23(4): 1506-1518, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422518

RESUMEN

The metabolic contribution of the small intestine (SI) is still unclear despite recent studies investigating the involvement of single cells in regional differences. Using untargeted proteomics, we identified regional characteristics of the three intestinal tracts of C57BL/6J mice and found that proteins abundant in the mouse ileum correlated with the high ileal expression of the corresponding genes in humans. In the SI of C57BL/6J mice, we also detected an increasing abundance of lysosomal acid lipase (LAL), which is responsible for degrading triacylglycerols and cholesteryl esters within the lysosome. LAL deficiency in patients and mice leads to lipid accumulation, gastrointestinal disturbances, and malabsorption. We previously demonstrated that macrophages massively infiltrated the SI of Lal-deficient (KO) mice, especially in the duodenum. Using untargeted proteomics (ProteomeXchange repository, data identifier PXD048378), we revealed a general inflammatory response and a common lipid-associated macrophage phenotype in all three intestinal segments of Lal KO mice, accompanied by a higher expression of GPNMB and concentrations of circulating sTREM2. However, only duodenal macrophages activated a metabolic switch from lipids to other pathways, which were downregulated in the jejunum and ileum of Lal KO mice. Our results provide new insights into the process of absorption in control mice and possible novel markers of LAL-D and/or systemic inflammation in LAL-D.


Asunto(s)
Proteoma , Esterol Esterasa , Animales , Ratones , Ésteres del Colesterol/metabolismo , Yeyuno , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Proteoma/genética , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Humanos
4.
Brain Sci ; 14(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391738

RESUMEN

Previous studies have shown that contextual information may aid in guessing the intention underlying others' actions in conditions of perceptual ambiguity. Here, we aimed to evaluate the temporal deployment of contextual influence on action prediction with increasing availability of kinematic information during the observation of ongoing actions. We used action videos depicting an actor grasping an object placed on a container to perform individual or interpersonal actions featuring different kinematic profiles. Crucially, the container could be of different colors. First, in a familiarization phase, the probability of co-occurrence between each action kinematics and color cues was implicitly manipulated to 80% and 20%, thus generating contextual priors. Then, in a testing phase, participants were asked to predict action outcome when the same action videos were occluded at five different timeframes of the entire movement, ranging from when the actor was still to when the grasp of the object was fully accomplished. In this phase, all possible action-contextual cues' associations were equally presented. The results showed that for all occlusion intervals, action prediction was more facilitated when action kinematics deployed in high- than low-probability contextual scenarios. Importantly, contextual priors shaped action prediction even in the latest occlusion intervals, where the kinematic cues clearly unveiled an action outcome that was previously associated with low-probability scenarios. These residual contextual effects were stronger in individuals with higher subclinical autistic traits. Our findings highlight the relative contribution of kinematic and contextual information to action understanding and provide evidence in favor of their continuous integration during action observation.

5.
Brain Struct Funct ; 229(3): 549-559, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36808005

RESUMEN

Multisensory integration (MSI) is a phenomenon that occurs in sensory areas after the presentation of multimodal stimuli. Nowadays, little is known about the anticipatory top-down processes taking place in the preparation stage of processing before the stimulus onset. Considering that the top-down modulation of modality-specific inputs might affect the MSI process, this study attempts to understand whether the direct modulation of the MSI process, beyond the well-known sensory effects, may lead to additional changes in multisensory processing also in non-sensory areas (i.e., those related to task preparation and anticipation). To this aim, event-related potentials (ERPs) were analyzed both before and after auditory and visual unisensory and multisensory stimuli during a discriminative response task (Go/No-go type). Results showed that MSI did not affect motor preparation in premotor areas, while cognitive preparation in the prefrontal cortex was increased and correlated with response accuracy. Early post-stimulus ERP activities were also affected by MSI and correlated with response time. Collectively, the present results point to the plasticity accommodating nature of the MSI processes, which are not limited to perception and extend to anticipatory cognitive preparation for task execution. Further, the enhanced cognitive control emerging during MSI is discussed in the context of Bayesian accounts of augmented predictive processing related to increased perceptual uncertainty.


Asunto(s)
Desempeño Psicomotor , Percepción Visual , Percepción Visual/fisiología , Teorema de Bayes , Desempeño Psicomotor/fisiología , Potenciales Evocados , Tiempo de Reacción/fisiología , Percepción Auditiva/fisiología , Estimulación Acústica , Estimulación Luminosa , Electroencefalografía
6.
Mol Metab ; 79: 101869, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160938

RESUMEN

OBJECTIVE: Lysosomal acid lipase (LAL) is the only enzyme known to hydrolyze cholesteryl esters (CE) and triacylglycerols in lysosomes at an acidic pH. Despite the importance of lysosomal hydrolysis in skeletal muscle (SM), research in this area is limited. We hypothesized that LAL may play an important role in SM development, function, and metabolism as a result of lipid and/or carbohydrate metabolism disruptions. RESULTS: Mice with systemic LAL deficiency (Lal-/-) had markedly lower SM mass, cross-sectional area, and Feret diameter despite unchanged proteolysis or protein synthesis markers in all SM examined. In addition, Lal-/- SM showed increased total cholesterol and CE concentrations, especially during fasting and maturation. Regardless of increased glucose uptake, expression of the slow oxidative fiber marker MYH7 was markedly increased in Lal-/-SM, indicating a fiber switch from glycolytic, fast-twitch fibers to oxidative, slow-twitch fibers. Proteomic analysis of the oxidative and glycolytic parts of the SM confirmed the transition between fast- and slow-twitch fibers, consistent with the decreased Lal-/- muscle size due to the "fiber paradox". Decreased oxidative capacity and ATP concentration were associated with reduced mitochondrial function of Lal-/- SM, particularly affecting oxidative phosphorylation, despite unchanged structure and number of mitochondria. Impairment in muscle function was reflected by increased exhaustion in the treadmill peak effort test in vivo. CONCLUSION: We conclude that whole-body loss of LAL is associated with a profound remodeling of the muscular phenotype, manifested by fiber type switch and a decline in muscle mass, most likely due to dysfunctional mitochondria and impaired energy metabolism, at least in mice.


Asunto(s)
Enfermedades Mitocondriales , Enfermedad de Wolman , Animales , Ratones , Músculo Esquelético/metabolismo , Proteómica , Esterol Esterasa/metabolismo , Enfermedad de Wolman/genética
7.
Exp Clin Endocrinol Diabetes ; 131(12): 639-645, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956971

RESUMEN

As a result of an unhealthy diet and limited physical activity, obesity has become a widespread pandemic worldwide and is an important predictor for the development of cardiovascular disease. Obesity is often characterized by a pro-inflammatory environment in white adipose tissue (WAT), mainly due to increased macrophage infiltration. These immune cells boost their lipid concentrations by accumulating the content of dying adipocytes. As the lysosome is highly involved in lipid handling, the progressive lipid accumulation may result in lysosomal stress and a metabolic shift. Recent studies have identified glycoprotein non-metastatic melanoma protein B (GPNMB) as a novel marker of inflammatory diseases. GPNMB is a type I transmembrane protein on the cell surface of various cell types, such as macrophages, dendritic cells, osteoblasts, and microglia, from which it can be proteolytically cleaved into a soluble molecule. It is induced by lysosomal stress via microphthalmia-associated transcription factor and thus has been found to be upregulated in many lysosomal storage disorders. In addition, a clear connection between GPNMB and obesity was recently established. GPNMB was shown to have protective and anti-inflammatory effects in most cases, preventing the progression of obesity-related metabolic disorders. In contrast, soluble GPNMB likely has the opposite effect and promotes lipogenesis in WAT. This review aims to summarize and clarify the role of GPNMB in the progression of obesity and to highlight its potential use as a biomarker for lipid-associated disorders.


Asunto(s)
Glicoproteínas , Glicoproteínas de Membrana , Humanos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas/metabolismo , Lisosomas/metabolismo , Obesidad/metabolismo , Lípidos
8.
Cardiovasc Diabetol ; 22(1): 327, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017481

RESUMEN

BACKGROUND: Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear. METHODS: We investigated the impact of MMP12 deficiency on CMDs in a mouse model that mimics human disease by simultaneously developing adipose tissue inflammation, insulin resistance, and atherosclerosis. To this end, we generated and characterized low-density lipoprotein receptor (Ldlr)/Mmp12-double knockout (DKO) mice fed a high-fat sucrose- and cholesterol-enriched diet for 16-20 weeks. RESULTS: DKO mice showed lower cholesterol and plasma glucose concentrations and improved insulin sensitivity compared with LdlrKO mice. Untargeted proteomic analyses of epididymal white adipose tissue revealed that inflammation- and fibrosis-related pathways were downregulated in DKO mice. In addition, genetic deletion of MMP12 led to alterations in immune cell composition and a reduction in plasma monocyte chemoattractant protein-1 in peripheral blood which indicated decreased low-grade systemic inflammation. Aortic en face analyses and staining of aortic valve sections demonstrated reduced atherosclerotic plaque size and collagen content, which was paralleled by an improved relaxation pattern and endothelial function of the aortic rings and more elastic aortic sections in DKO compared to LdlrKO mice. Shotgun proteomics revealed upregulation of anti-inflammatory and atheroprotective markers in the aortas of DKO mice, further supporting our data. In humans, MMP12 serum concentrations were only weakly associated with clinical and laboratory indicators of CMDs. CONCLUSION: We conclude that the genetic deletion of MMP12 ameliorates obesity-induced low-grade inflammation, white adipose tissue dysfunction, biomechanical properties of the aorta, and the development of atherosclerosis. Therefore, therapeutic strategies targeting MMP12 may represent a promising approach to combat CMDs.


Asunto(s)
Aterosclerosis , Resistencia a la Insulina , Placa Aterosclerótica , Animales , Humanos , Ratones , Aterosclerosis/genética , Aterosclerosis/prevención & control , Colesterol , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Metaloproteinasa 12 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Proteómica , Receptores de LDL/genética
9.
Cogn Neurodyn ; 17(6): 1433-1446, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37969946

RESUMEN

The aim of this study was to describe the spectral features of pre-stimulus event-related potential (ERP) components elicited in visual tasks such as the Bereitschaftspotential (BP), prefrontal negativity (pN) and visual negativity (vN). ERPs are considered time-locked and phase-locked (evoked) activity, but we have also analyzed the non-phase but time-locked (induced) activity in the same interval by applying the temporal spectral evolution (TSE) method. Participants (N = 26) were tested in a passive task, a simple response task (SRT) and a discriminative response task (DRT), where EEG activity was recorded with 64 scalp electrodes. We analyzed the time-frequency modulations (phase and non-phase) prior to the onset of the stimuli in the sub-delta, delta, theta, alpha, beta, and gamma frequency bands. The results showed that all the pre-stimulus ERP components were mainly regulated by evoked activity in the sub-delta band. On the other hand, induced activity seems to be linked to evoked responses but with a different psychophysiological role. We concluded that other preparatory cognitive mechanisms associated with ERPs can also be detected by the TSE method. This finding may suggest underlying mechanisms in non-phase activity and requires the addition of non-phase activity analysis to the traditional analysis (phase and evoked activity).

10.
Psychol Sport Exerc ; 64: 102302, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37665802

RESUMEN

OBJECTIVES: In this study, we aimed at evaluating the effects of cognitive-motor dual-task training (CMDT) on sport-specific athletic performance and cognitive functions of semi-elite basketball players. Further, we investigated the CMDT effects on reactive brain processing by employing event-related potential (ERP) analysis. DESIGN: A randomized controlled trial was conducted including 52 young semi-elite basketball players (28 females mean age 16.3 ± 1.1 years) who were randomly assigned into an experimental (Exp) group executing the CMDT and a control (Con) group performing standard motor training. METHOD: Athletes' sport-specific performance was evaluated with dribbling tests before and after a five-week training. Cognitive performance was assessed by measuring speed and accuracy in a discrimination response task. Brain activity associated with sensory processing, selective attention, and decision-making was measured through the P1, N1, and P3 components. The CMDT consisted of simultaneous execution of dribbling exercises and cognitive tasks which were realized using interactive devices located around the athlete on the basket court. Data were submitted to a mixed analysis of variance. RESULTS: Both groups showed some improvements from pre-to post-tests, but the Exp group improved basket-specific performance by 13% more than the Con group; in addition, the cognitive performance also improved more in the Exp group (25.8% in accuracy and 5.4% response speed). According to the EEG results, training did not affect sensory processing and attentional processing which were equally increased after both kinds of training; however, decision-making processes were specifically affected by the experimental training. CONCLUSIONS: This study confirmed the effectiveness of the proposed CMDT protocol on both sport-specific and cognitive performance of basketball players and showed that the neural basis of these benefits may be mediated by more intense decisional processing allowing faster connection between sensory encoding and response execution.


Asunto(s)
Rendimiento Atlético , Baloncesto , Femenino , Humanos , Adolescente , Encéfalo , Cognición , Atletas
11.
Psychol Sport Exerc ; 65: 102335, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37665843

RESUMEN

Stimulus identification and action outcome understanding for a rapid and accurate response selection, play a fundamental role in racquet sports. Here, we investigated the neurodynamics of visual anticipation in tennis manipulating the postural and kinematic information associated with the body of opponents by means of a spatial occlusion protocol. Event Related Potentials (ERPs) were evaluated in two groups of professional tennis players (N = 37) with different levels of expertise, while they observed pictures of opponents and predicted the landing position as fast and accurately as possible. The observed action was manipulated by deleting different body districts of the opponent (legs, ball, racket and arm, trunk). Full body image (no occlusion) was used as control condition. The worst accuracy and the slowest response time were observed in the occlusion of trunk and ball. The former was associated with a reduced amplitude of the ERP components likely linked to body processing (the N1 in the right hemisphere) and visual-motor integration awareness (the pP1), as well as with an increase of the late frontal negativity (the pN2), possibly reflecting an effort by the insula to recover and/or complete the most correct sensory-motor representation. In both occlusions, a decrease in the pP2 may reflect an impairment of decisional processes upon action execution following sensory evidence accumulation. Enhanced amplitude of the P3 and the pN2 components were found in more experienced players, suggesting a greater allocation of resources in the process connecting sensory encoding and response execution, and sensory-motor representation.


Asunto(s)
Anticipación Psicológica , Atletas , Encéfalo , Navegación Espacial , Tenis , Percepción Visual , Tenis/fisiología , Tenis/psicología , Atletas/psicología , Encéfalo/fisiología , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Potenciales Evocados
12.
iScience ; 26(8): 107430, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37575197

RESUMEN

The Bereitschaftspotential (BP), a scalp potential recorded in humans during action preparation, is characterized by a slow amplitude increase over fronto-central regions as action execution approaches. We recorded TMS evoked-potentials (TEP) stimulating the supplementary motor area (SMA) at different time-points during a Go/No-Go task to assess whether and how cortical excitability and connectivity of this region change as the BP increases. When approaching BP peak, left SMA reactivity resulted greater. Concurrently, its effective connectivity increased with the left occipital areas, while it decreased with the right inferior frontal gyrus, indicating a fast reconfiguration of cortical networks during the preparation of the forthcoming action. Functional connectivity patterns supported these findings, suggesting a critical role of frequency-specific inter-areal interactions in implementing top-down mechanisms in the sensorimotor system prior to action. These findings reveal that BP time-course reflects quantitative and qualitative changes in SMA communication patterns that shape mechanisms involved in motor readiness.

13.
Brain Sci ; 13(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37508914

RESUMEN

The Stroop test represents a widely used task in basic and clinical research for approaching the cognitive system functioning in humans. However, a clear overview of the neurophysiological signatures associated with the different sub-domains of this task remains controversial. In the present study, we leveraged the EEG technique to explore the modulation of specific post-stimulus ERPs components during the Stroop test. Critically, to better disentangle the contribution of facilitation (i.e., faster color identification times for color-congruent Stroop words) and interference (i.e., longer color identification times for color-incongruent Stroop words) processes prompted by the Stroop test, we delivered congruent and incongruent trials in two separate experimental blocks, each including the respective neutral condition. Thanks to this methodological manipulation, we were able to clearly dissociate the two sub-processes. Electrophysiological results suggest specific markers of brain activity for the facilitation and the interference effects. Indeed, distinctive Stroop-related ERPs (i.e., the P3, the N450, and the LPC) were differently modulated in the two sub-processes. Collectively, we provide evidence of selected brain activities involved in the reactive stage of processing associated with the Stroop effect.

14.
Mol Metab ; 73: 101737, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37182562

RESUMEN

OBJECTIVE: To date, the only enzyme known to be responsible for the hydrolysis of cholesteryl esters and triacylglycerols in the lysosome at acidic pH is lysosomal acid lipase (LAL). Lipid malabsorption in the small intestine (SI), accompanied by macrophage infiltration, is one of the most common pathological features of LAL deficiency. However, the exact role of LAL in intestinal lipid metabolism is still unknown. METHODS: We collected three parts of the SI (duodenum, jejunum, ileum) from mice with a global (LAL KO) or intestine-specific deletion of LAL (iLAL KO) and corresponding controls. RESULTS: We observed infiltration of lipid-associated macrophages into the lamina propria, where neutral lipids accumulate massively in the SI of LAL KO mice. In addition, LAL KO mice absorb less dietary lipids but have accelerated basolateral lipid uptake, secrete fewer chylomicrons, and have increased fecal lipid loss. Inflammatory markers and genes involved in lipid metabolism were overexpressed in the duodenum of old but not in younger LAL KO mice. Despite the significant reduction of LAL activity in enterocytes of enterocyte-specific (iLAL) KO mice, villous morphology, intestinal lipid concentrations, expression of lipid transporters and inflammatory genes, as well as lipoprotein secretion were comparable to control mice. CONCLUSIONS: We conclude that loss of LAL only in enterocytes is insufficient to cause lipid deposition in the SI, suggesting that infiltrating macrophages are the key players in this process.


Asunto(s)
Intestinos , Metabolismo de los Lípidos , Ratones , Animales , Ésteres del Colesterol/metabolismo , Macrófagos/metabolismo , Enfermedad de Wolman
15.
Brain Sci ; 13(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36979265

RESUMEN

The present study aims to investigate the behavioral outcomes and the antecedent brain dynamics during the preparation of tasks in which the discrimination is either about the choice (choice response task; CRT) or the action (Go/No-go), and in a task not requiring discrimination (simple response task; SRT). Using event-related potentials (ERPs), the mean amplitude over prefrontal, central, and parietal-occipital sites was analyzed in 20 young healthy participants in a time frame before stimulus presentation to assess cognitive, motor, and visual readiness, respectively. Behaviorally, participants were faster and more accurate in the SRT than in the CRT and the Go/No-go. At the electrophysiological level, the proactive cognitive and motor ERP components were larger in the CRT and the Go/No-go than the SRT, but the largest amplitude emerged in the Go/No-go. Further, the amplitude over parieto-occipital leads was enhanced in the SRT. The strongest intensity of the frontal negative expectancy wave over prefrontal leads in the Go/No-go task could be attributed to the largest uncertainty about the target presentation and subsequent motor response selection and execution. The enhanced sensory readiness in the SRT can be related to either an increased visual readiness associated with task requirements or a reduced overlap with proactive processing on the scalp.

16.
Front Nutr ; 10: 1016017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908918

RESUMEN

Most people are often tempted by their impulses to "indulge" in high-calorie food, even if this behaviour is not consistent with their goal to control weight in the long term and might not be healthy. The outcome of this conflict is strongly dependent on inhibitory control. It has already been reported that individuals with weaker inhibitory control consume more high-calorie food, are more often unsuccessful dieters, overweight or obese compared to people with more effective inhibitory control. In the present study, we aimed at investigating inhibitory control in the context of human eating behaviour. A sample of 20 healthy normal-weight adults performed a 50% probability visual affective Go/NoGo task involving food (high- and low-calorie) and non-food images as stimuli. Single-pulse transcranial magnetic stimulation (TMS) was administered over the right primary motor cortex (M1) either 300 ms after image presentation to measure corticospinal excitability during the different stimulus categories or 300 ms after the appearance of a fixation point, as a control stimulation condition. The experimental session consisted of a food target and a non-food target block. Behavioural outcomes showed a natural implicit inclination towards high-calorie food in that participants were faster and more accurate compared to the other categories. This advantage was selectively deleted by TMS, which slowed down reaction times. MEPs did not differ according to the stimulus category, but, as expected, were bigger for Go compared to NoGo trials. Participants judged high-calorie food also as more appetising than low-calorie food images. Overall, our results point to a differential modulation when targeting inhibitory control, in favour of the more palatable food category (high-calorie). Present data suggest that the activity of the motor system is modulated by food nutritional value, being more engaged by appetising food. Future work should explore to what extent these processes are affected in patients with eating disorders and should aim to better characterise the related dynamics of cortical connectivity within the motor network.

17.
Cortex ; 159: 193-204, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36640619

RESUMEN

The auditory Positivity (aP) and the visual Negativity (vN) are recently discovered modality-specific event-related potential (ERP) components associated with sensory readiness, which seems promising to study anticipatory perception and attention. However, a crucial aspect of these waves remains to be determined since it is still unclear if these components are indeed related to sensory readiness or represent the result of stimulus predictably. Indeed, earlier studies found these components in tasks where stimuli were repeatedly presented uniquely in the same sensory modality. To disentangle this issue, we used an experimental design consisting of three passive tasks: a unimodal auditory condition, a unimodal visual condition, and an intermodal condition in which the visual and auditory stimuli were unpredictably alternated. Then, we compared the amplitudes of the aP and vN in the three conditions and performed correlation analyses between pre-stimulus and post-stimulus components. Crucially, results showed that in the intermodal condition the components still occur, but their amplitudes are decreased compared to unimodal condition, providing evidence that they are only partially dependent on the task and that expectancy might modulate them. This result is in line with the "modality-shift effect" costs phenomenon which can occur also for passive tasks even before stimulus presentation. In addition, the amplitude of the post-stimulus components correlated with pre-stimulus ERP. Collectively, the present study confirms that the aP and the vN reflect sensory readiness processes that "boost" post-stimulus auditory N1 and visual P1 components.


Asunto(s)
Encéfalo , Potenciales Evocados , Humanos , Tiempo de Reacción , Estimulación Acústica , Estimulación Luminosa/métodos , Electroencefalografía
18.
Biomedicines ; 11(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36672673

RESUMEN

Safety data regarding BNT162b2 in cancer patients (CPs) are scarce. Herein we report the side effects (SEs), the adverse events (AEs), and the patient-reported outcomes (PROs) following BNT162b2 administration in CPs treated at the San Luigi Gonzaga University Hospital. All CPs who agreed to participate in our vaccination campaign received BNT162b2 and were included in the descriptive analysis. An anonymous questionnaire investigating the occurrence of SEs/AEs and PROs was administered to the study population 21 days after the first dose. Pearson's chi-squared test was used to estimate the risk of experiencing SEs/AEs according to selected variables. A total of 997 patients were included in the study: 62.0% had stage IV cancer, and 68.8% were receiving an active treatment, of whom 15.9% were receiving immunotherapy. SEs/AEs were recorded in 37.1% of cases after the first dose and in 48.5% of cases after the second dose. The most common SEs were muscle pain/local rash (27.9% and 28%, after the first and second dose, respectively). Patients older than 70 years showed lower risk of SEs/AEs, while women showed a higher risk. Before receiving the vaccine, 18.2% of patients felt fearful and/or insecure about the vaccination. After the first dose, 57.5% of patients changed their feelings positively. Our data support the short-term safety of BNT162b2 in CPs, regardless of disease stage and concurrent treatments. Overall, the vaccination showed a positive impact on quality of life.

19.
Int J Psychophysiol ; 177: 230-239, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35661749

RESUMEN

This study aimed to test the effects of specific sport practices on cognitive sensory-motor performance and underlying brain functions in children. Behavioral performance and event-related potentials (ERP) were investigated during a cognitive visuomotor task in 64 preadolescent children practicing racket (Rack) sports, martial arts (Mart), indoor climbing (Clim), or not practicing any sport (controls, Cont). At the behavioral level, response speed and accuracy were studied. At the electrophysiological level, motor, cognitive and sensory-attentional readiness, and post-perceptual attentional functions were investigated. Behavioral results showed that Mart players had the fastest response time (RT). Rack players had the most consistent RT and committed the lowest omission errors. Clim athletes were the most accurate in terms of false alarms. ERP results showed that motor readiness was largest in Mart players. The Rack group had the largest cognitive preparation and the Clim one had the largest sensory-attentional readiness activity. Rack and Mart players had the largest activity associated with post-perceptual attentional processing. This result shows that practicing specific sports may allow differential benefits on cognitive processing. Racket sports seem to stimulate action speed consistency and improve accuracy for omissions, increasing cognitive preparation, and post-perceptual attentional processing. Mart practice may allow a more speed-oriented response behavior, probably due to large motor preparation and allocation of post-perceptual attentional resources, but only when response execution is required. Indoor climbing may favor response accuracy reducing unwanted responses as indexed by an increased sensory-attentional readiness. Overall, all the considered sports disciplines may improve cognitive processing, but each one is associated with different benefits on cognitive performance by possibly stimulating separate brain processing. This kind of information could be crucial to select the more appropriate sport depending on individual demands.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Atención/fisiología , Niño , Cognición/fisiología , Electroencefalografía/métodos , Humanos , Tiempo de Reacción
20.
Biol Psychol ; 172: 108360, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35618162

RESUMEN

Receiving feedback on action correctness is a relevant factor in learning, but only a few recent studies have investigated the neural bases involved in feedback processing and its consequences on performance. Several event-related potentials (ERP) studies investigated the feedback-related negativity, which is an ERP occurring after the presentation of a feedback stimulus. In contrast, the present study investigates the effect of providing feedback on brain activities before and after the presentation of an imperative stimulus with the aim to show how this could have an impact on cognitive functions related to anticipatory and post-stimulus task processing. Participants performed a standard visuomotor task and a modified version of the same task in which feedback sounds were emitted when participants committed performance errors. Overall, results showed that in the feedback task subjects have better cognitive control than in the standard task. All behavioral measures were improved in the feedback task. At the brain level, all the studied components were modulated by the presence of the feedback cue. Results pointed to a possible increase of anticipatory activity in the prefrontal cortex, a reduction of perceptual awareness in areas previously associated with the anterior insular cortex, and an increase of activity associated with selective attention in sensory cortices.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Atención , Cognición , Retroalimentación , Humanos , Desempeño Psicomotor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...